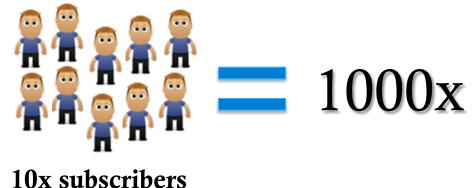

Demystifying 60GHz Outdoor Picocells


Yibo Zhu, Zengbin Zhang, Zhinus Marzi, Chris Nelson, Upamanyu Madhow, Ben Y. Zhao and Haitao Zheng

> University of California, Santa Barbara yibo@cs.ucsb.edu

Cellular Network Capacity Crisis

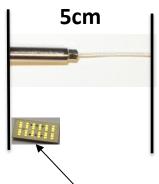
• By 2020, bandwidth requirements are predicted to increase by 1000-fold.

• Industry is aware

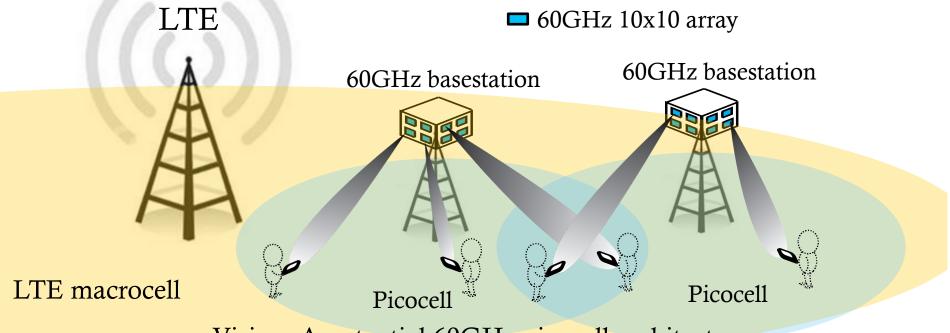
Technology Vision 2020 - support up to 1000 times more capacity September 12, 2013

Current Solutions Are Limited

- To meet the 1000x requirement, we could..
 - Buy more spectrum: (LTE) 100MHz \rightarrow 100GHz
 - Massively large MIMO arrays: 1000-element array
- In reality, hopefully 2x licensed spectrum and 20x gain from MIMO by 2020
 - Still far from 1000x
- Need dramatically different approaches to speed up!

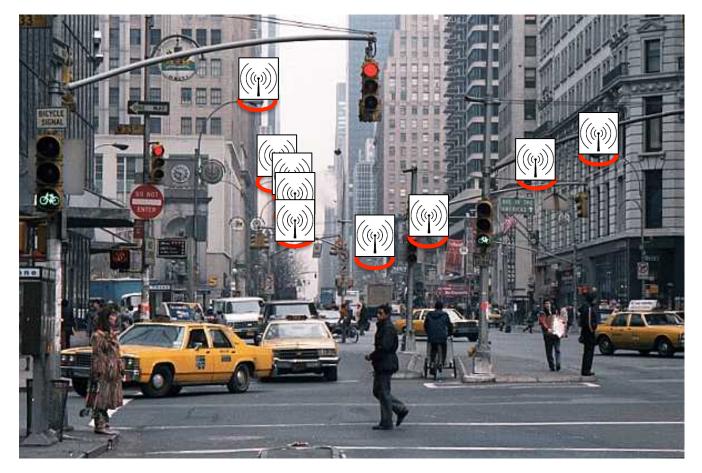

The Promise of 60GHz

- Large *unlicensed* spectrum available.
 E.g. 7GHz unlicensed spectrum
- Compressed arrays create highly directional beams
 - Narrow beams minimize interference
- Leverage 802.11ad as a great start-point
 - 802.11ad: IEEE indoor 60GHz standard
 - Support three channels, up to 6.76Gbps data rate per channel

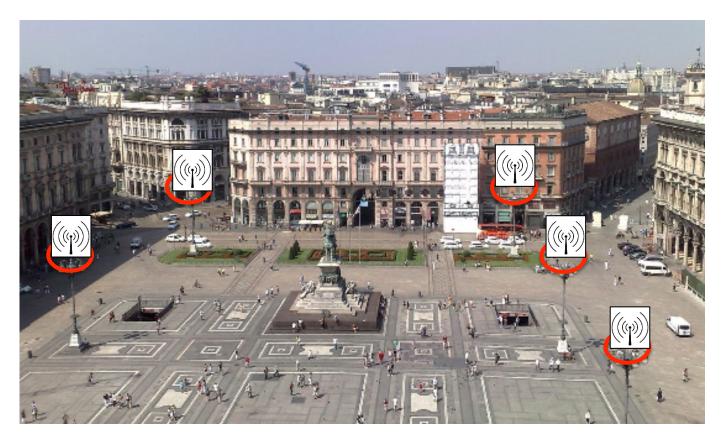

Rails for *free*

Single element 2.4GHz antenna

60GHz **32-element** Array¹, **1.8cm × 0.8cm**

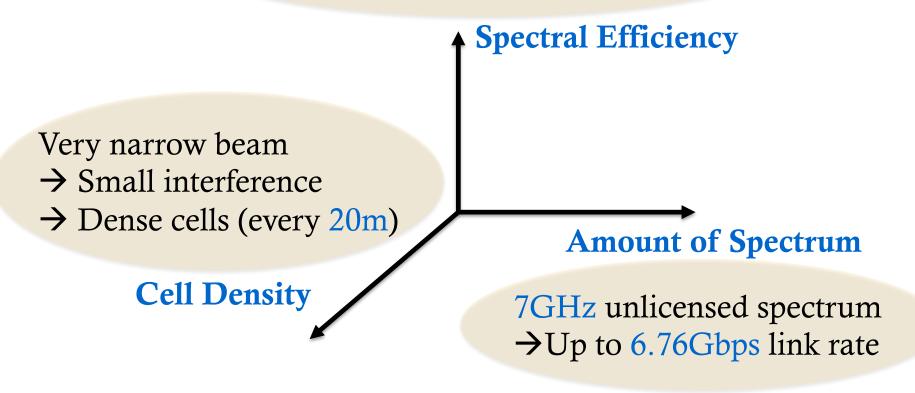

If We Could Bring 60GHz to Outdoor

Vision: A potential 60GHz picocell architecture


- One array for one user, e.g. transmit @2Gbps
- A picocell: 4 faces, each face 36 arrays \rightarrow **288Gbps** downlink!
 - Each face is only 15cm × 15cm large
- Narrow beamforming → minimal inter-picocell interference → capacity scales with picocell density

Real Life Examples

Lamppost-based deployment easily covers downtown streets and intersections.


Real Life Examples (cont.)

Lamppost-based deployment also easily covers plazas.

60GHz Picocell Pros

Many arrays transmit simultaneously $\rightarrow \sim 288$ Gbps capacity *per basestation*

Dimensions of Capacity

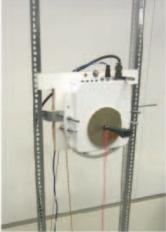
Cons (Common Concerns)

- 60GHz oxygen absorption \rightarrow range too small
- High frequency \rightarrow sensitive to blockage
- Narrow beam \rightarrow user motion breaks connection

We perform detail measurements to understand all these concerns.

Outline

- Motivation
- Measurements for demystifying 60GHz picocells
 - Controlled environment measurements
 - Range
 - o Blockage
 - Motion
 - Spatial reuse
 - Real-life scenarios measurements
- Large-scale simulation
- Conclusion & future directions


Measurement Methodology

- Two testbeds
 - Wilocity: 802.11ad, 2x8 arrays
 - HXI: horn antenna
 - Emulate the main beam of 10x10 arrays
- Both controlled and real-life environment

Basestation

Client •

Wilocity 2x8 today

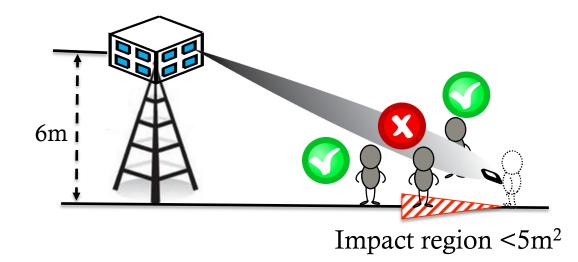
HXI emulate 10x10 future

Real-life environment

Range

• Concern: 60GHz range too small for outdoor

Radio Type	Weather	Minimum Link Rate (Mbps)		
		385	1155	2310
Wilocity 2x8 EIRP=23dBm	Clear	23m	15m	10m
	Heavy rain	22m	-	-
HXI 10x10 EIRP=40dBm ¹	Clear	178m	124m	93m
	Heavy rain	139m	102m	79m


Range measurement results

- Wilocity small array + low power $\rightarrow \sim 20$ m
- Larger array + higher power \rightarrow 1Gbps at >100m
 - Align with theoretical link budget calculation

¹40dBm EIRP is under FCC regulation.

Robustness to Blockage

• Concern 2: pedestrians easily block the signal

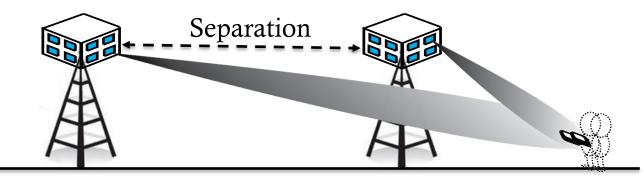
- Blockage impact region is small (<5m²)
 - The peer must be close enough to block
 - Higher basestation \rightarrow smaller impact region


Handling Blockage via Reflection

- We can use NLoS path when LoS is blocked
- Most outdoor materials have <5dB reflection loss
 - Metal, plastic, wood, bricks, etc

User Motion

• Concern 3: user motion breaks 60GHz connection

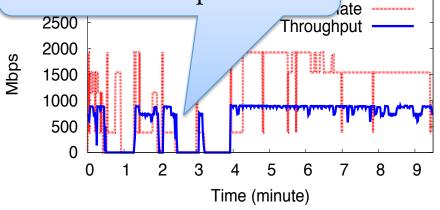


Realign beam to adapt user motion

- Realign the beam every ~2s maintains >50% throughput in worst cases (details in paper)
 - Wilocity realign fast enough
 - Longer distance even easier

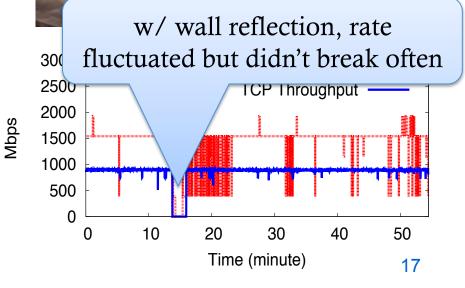
Interference and Spatial Reuse

- What is the minimal basestation separation for low interference?
 - "Worst-case" scenario: two collocated users

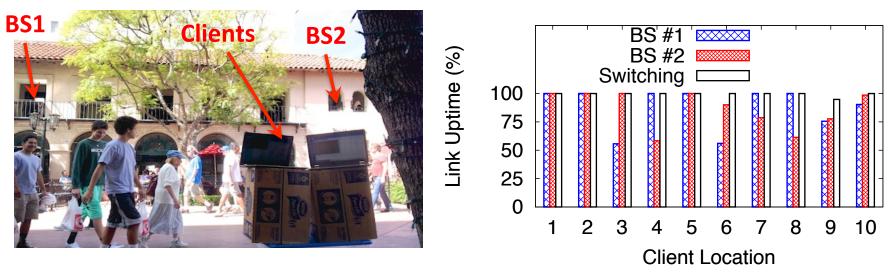

- 10x10 arrays $\rightarrow \sim 20m$ separation is enough
- Transmission range 100m >> 20m separation → high spatial reuse
 - Picocells can largely overlap

Real-life TCP Performance

• 10 locations w/ random pedestrians

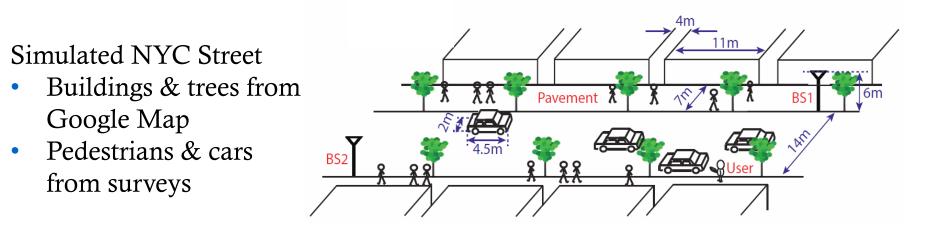


Link broke due to blockage from crowds of pedestrians


Clients Campus Plaza BS

Real-life Performance (cont.)

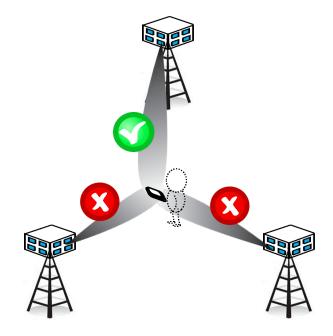
- Test two basestations simultaneously
 - Dense deployment \rightarrow multiple basestations in range



Switching between two basestations → nearly 100% availability!

We need a pico-cloud architecture that serves each user with multiple basestations.

Large-scale Simulation


• Examine street locations every m²

- <u>Availability</u>: two basestations → nearly 100%
 Confirm the real-life measurement
- <u>Interference</u>: 20m basestation separation → minimal throughput loss

Conclusion & Future Directions

- Propose 60GHz outdoor picocell
- Measurement verifies the feasibility and potential
- Future research directions
 - Pico-cloud architecture
 - User tracking
 - Cross-layer protocol design
 - Hardware design
 - Energy efficient arrays

