Cutting the Cord: A Robust Wireless Facilities Network for Data Centers

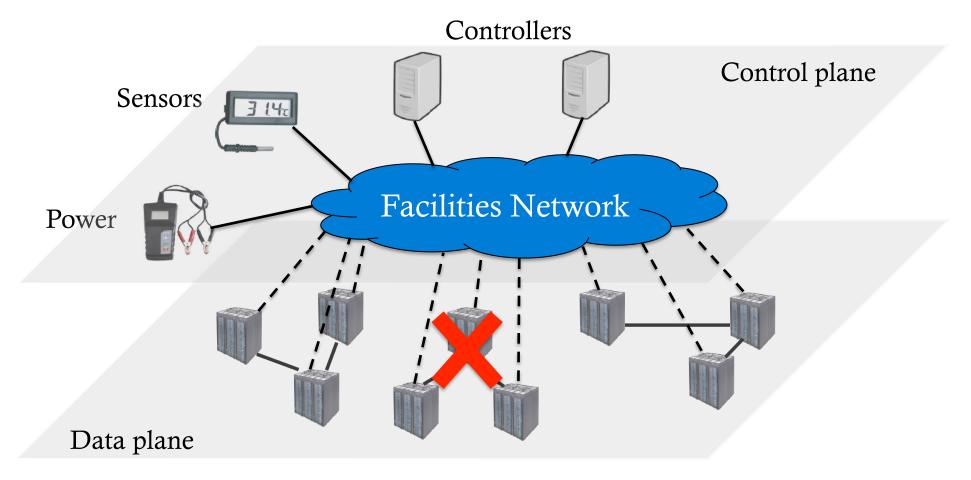
Yibo Zhu, Xia Zhou[§], Zengbin Zhang, Lin Zhou, Amin Vahdat[†], Ben Y. Zhao and Haitao Zheng

U.C. Santa Barbara, [§]Dartmouth College, †U.C. San Diego & Google <u>yibo@cs.ucsb.edu</u>

Data Center Networks (DCN)

• DCN: key infrastructures for mobile and big data applications

- Large and dynamic \rightarrow management complexity
 - Highly dynamic data traffic
 - Shared by changing customers
 - Frequent failure, maintenance and upgrades


Beyond Data Plane

- Various control messages
 - Flow scheduling
 - Monitoring environment & power
 - Virtual machine imaging and configuration
 - Failure recovery
 - Bootstrap upgraded servers
- Must deliver timely and reliable
 - Not interfered by congested data traffic
 - Even when data plane not working

Upgrade ~100 servers per day on average

A Facilities Network

Proposed DCN architecture

Requirements of Facilities Network

Performance

Low bandwidth

• 1Gbps enough?

Bounded delay¹

- One packet message <10ms
- 1MB Large message <500ms

¹Devoflow, SIGCOMM'11

Fault isolation

No fate-sharing

• Ideally physically separated

Robustness

Always connected

• Even when large portions down

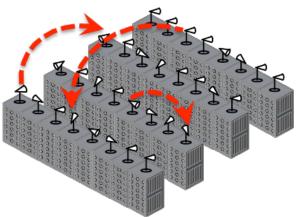
Must remain working even racks taken off

Option: Wired Facilities Network

- Connect all devices using cables
 - In-band: share w/ data plane
 - Out-of-band
- Advantage: large capacity
 - Challenges
 - Out-of-band: high cost, wiring
 - Poor fault isolation/robustness
 - Zero fault isolation for in-band
 - Even out-of-band interrupted by cable tray maintenance

Option: Wireless Facilities Network

- Place radios on top of racks
 - WiFi (1.3Gbps), 60GHz (6.76Gbps)
 - Enough bandwidth
- Advantages



- Cost: low (no additional switches/cables)
- Fault isolation: physically isolated from data plane
- Robustness: automatically reform links
- Challenges
 - Delay from wireless interference
 - Link coordination

Choice of Wireless Technology

60GHz 3D Beamforming, SIGCOMM'12

Widely available

Well-understood

- Omni-directional
- Contend for channel

Large interference footprint

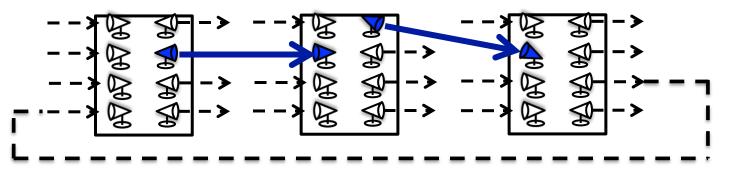
- Poor in dense DC
- Unpredictable delay

Recently available

Less-understood

- Highly directional
- Need coordination

Small interference footprint

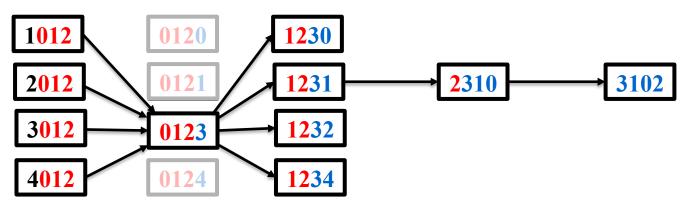

• Good for dense DC

Outline

- Motivation
- System design
 - Angora: a 60GHz facilities network
 - Wireless overlay design
 - Minimizing link interference
 - Fault recovery
- Evaluation
- Conclusion

Angora: a 60GHz Overlay

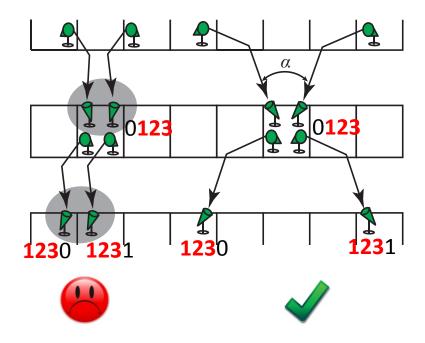
- Highly directional signal + limited radios per rack → limited connections per rack
- Antenna alignment \rightarrow extra delay \otimes


- Angora: fixed topology overlay
 - Multi-hop \rightarrow any-to-any connectivity
 - Fixed topology → no antenna coordination → no extra controllers, minimize delay

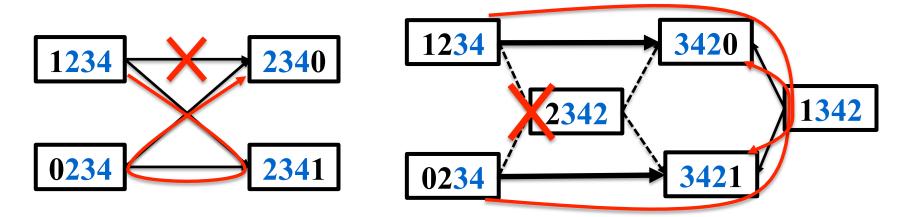
Structured Overlay Graph

- Key goal: minimize delay (hop count)
- The constraint: constant number of radios per rack → constant degree graph
- We choose Kautz graph
 Given degree and # of nodes → smallest diameter
- Hop count: Kautz < Random¹ << Fat-tree
 - Wired networks prefer Fat-tree due to low wiring complexity

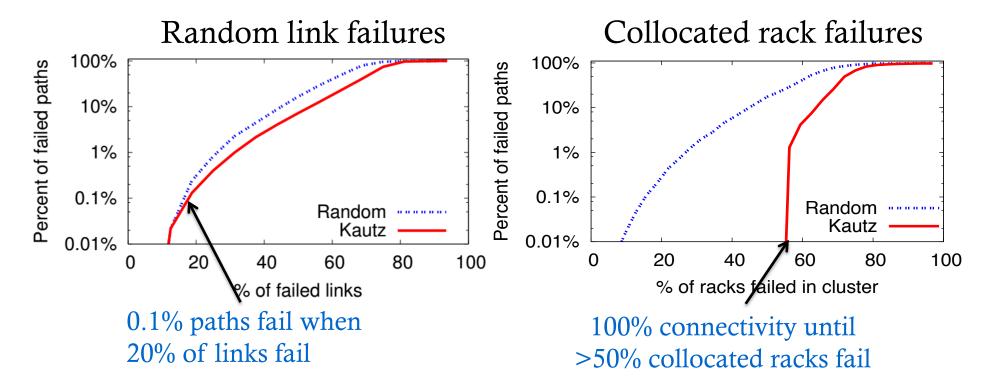
Kautz Graph


• Simple digit-shift routing

- Graph diameter = length of IDs
- Challenge: Kautz only supports specific node sizes
 We designed an algorithm to handle arbitrary node size


Node Naming and Interference

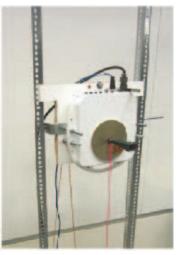
- Nodes naming affects interference
 60GHz interference: function of angular separation
- Goal: maximize angular separation between links
- Designed an optimal naming scheme
 - Achieved 14° angular separation in practice

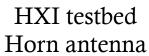


Failure Recovery Algorithms

- Link failure \rightarrow remove a graph edge
 - May happen when radio fails, or signal blocked
 - Leverage Kautz structure to re-route the traffic
- Rack failure \rightarrow remove a graph node
 - Similar deterministic algorithm

Failure Recovery Results


- Structural fault recovery \rightarrow good robustness
- Deterministic algorithms \rightarrow no extra coordinator


Outline

- Motivation
- System design
- Evaluation
 - Testbed
 - Simulation
- Conclusion

Testbed Validation

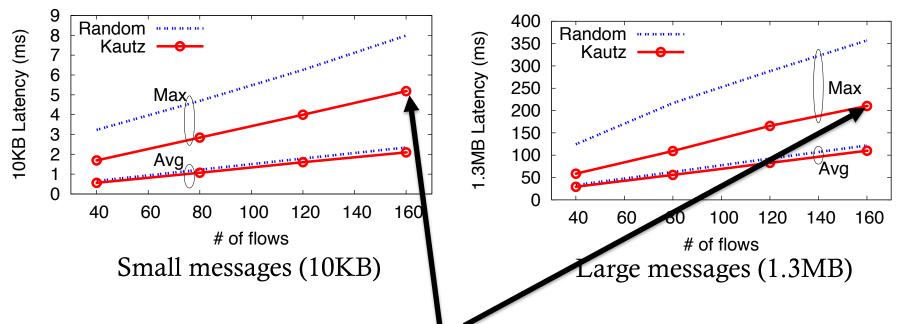
- Two testbeds
 - HXI: horn antennas
 - Wilocity: 2x8 arrays, affordable for multi-hop

Wilocity testbed 2x8 array

- Single link performance
 - Measured per-second TCP throughput over one month
 - Average 800(HXI)/900Mbps (capped by 1Gbps NIC)
 - Standard variation <1% average throughput → as stable as a wired link

Testbed Validation (Multi-hop)

•	Without interferenceLatency is smallLatency increases with hops	Path Length	10KB Latency
		2 hops	2.5ms
		3 hops	3.1ms
		4 hops	3.5ms
		Multi-hop performance	
•	Path self-interference		


- Kautz \rightarrow at most 4 hops \rightarrow at most 2 hop-pairs interfere
- Leverage channel allocation (3 channels in 60GHz)
- <1% paths have self-interference</p>
- Cross-path interference mitigated by node naming Multi-hop paths have low interference → small and predictable latency.

Large-scale Simulation

- We implement Angora in NS-3
 - Antenna: horns and arrays
 - 3D beamforming signal reflection
 - 802.11ad PHY/MAC
 - Kautz overlay routing
 - Medium size (320~480 racks) DCN layouts
- Micro-benchmarks: path hop count, concurrency, fault-tolerance
- End-to-end performance: single flow, Poisson flows, synchronized flows

End-to-end Performance

• Worst case: synchronized flows

- Tail delay satisfies facilities network requirements
- Structural (Kautz) >> random at tails

Conclusion

- Motivation: build an orthogonal facilities network as a core tool for managing DCN.
- We propose Angora, a Kautz overlay built on 60GHz 3D beamforming links.
- Addressed challenges
 - 60GHz link coordination
 - By Kautz graph w/ arbitrary node size
 - Wireless interference
 - Fault tolerance