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•  DCN: key infrastructures for mobile and big data 
applications 

•  Large and dynamic à management complexity 
–  Highly dynamic data traffic 

–  Shared by changing customers 
–  Frequent failure, maintenance and upgrades 

Data Center Networks (DCN) 
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Beyond Data Plane 

•  Various control messages 
–  Flow scheduling 

–  Monitoring environment & power 
–  Virtual machine imaging and configuration 

–  Failure recovery 
–  Bootstrap upgraded servers 

•  Must deliver timely and reliable 
–  Not interfered by congested data traffic 
–  Even when data plane not working 
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Upgrade ~100 servers 
per day on average 



Controllers 

Sensors 

Power 

Data plane 

Control plane 

A Facilities Network 
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Facilities Network 

Proposed DCN architecture 



Requirements of  Facilities Network 
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Must remain working even racks taken off  

Performance 

Low bandwidth 
•  1Gbps enough? 

 
Bounded delay1 

•  One packet 
message <10ms 

•  1MB Large 
message <500ms 

 
1Devoflow, SIGCOMM’11 

Fault isolation 

No fate-sharing 
•  Ideally physically 

separated 

Robustness 

Always connected 
•  Even when large 

portions down 



Option: Wired Facilities Network 

•  Challenges 
–  Out-of-band: high cost, wiring 

–  Poor fault isolation/robustness 
o  Zero fault isolation for in-band 

o  Even out-of-band interrupted by 
cable tray maintenance 
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•  Connect all devices using cables 
–  In-band: share w/ data plane 

–  Out-of-band 

 •  Advantage: large capacity 



Option: Wireless Facilities Network 

•  Place radios on top of  racks 
–  WiFi (1.3Gbps), 60GHz (6.76Gbps) 

–  Enough bandwidth 

•  Advantages 
–  Cost: low (no additional switches/cables) 
–  Fault isolation: physically isolated from data plane 

–  Robustness: automatically reform links 

•  Challenges  
–  Delay from wireless interference 
–  Link coordination 
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Choice of  Wireless Technology 
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WiFi 
60GHz 3D 
Beamforming, 
SIGCOMM’12 

Widely available 

Well-understood 
•  Omni-directional 
•  Contend for channel 

Large interference footprint 
•  Poor in dense DC 
•  Unpredictable delay 

Recently available 

Less-understood 
•  Highly directional 
•  Need coordination 

Small interference footprint 
•  Good for dense DC  



Outline 
•  Motivation 

•  System design 
–  Angora: a 60GHz facilities network 

–  Wireless overlay design 
–  Minimizing link interference 

–  Fault recovery 

•  Evaluation 

•  Conclusion 
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•  Highly directional signal + limited radios per rack à 
limited connections per rack 

•  Antenna alignment à extra delay L 

•  Angora: fixed topology overlay 
–  Multi-hop à any-to-any connectivity 
–  Fixed topology à no antenna coordination à no extra 

controllers, minimize delay 

Angora: a 60GHz Overlay  
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Structured Overlay Graph 

•  Key goal: minimize delay (hop count) 
•  The constraint: constant number of  radios per 

rack à constant degree graph 

•  We choose Kautz graph 
–  Given degree and # of  nodes à smallest diameter 

•  Hop count: Kautz < Random1 << Fat-tree 
–  Wired networks prefer Fat-tree due to low wiring 

complexity 
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1Jellyfish, NSDI’12 



•  Simple digit-shift routing 

•  Graph diameter = length of  IDs  

•  Challenge: Kautz only supports specific node sizes 
–  We designed an algorithm to handle arbitrary node size 

Kautz Graph 
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Node Naming and Interference 
•  Nodes naming affects interference 

–  60GHz interference: function of  angular separation 
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α

•  Goal: maximize angular 
separation between links 

•  Designed an optimal 
naming scheme 
–  Achieved 14˚ angular 

separation in practice 
1230	
   1231	
   1230	
   1231	
  

0123	
  0123	
  



Failure Recovery Algorithms 
•  Link failure à remove a graph edge 

–  May happen when radio fails, or signal blocked 

–  Leverage Kautz structure to re-route the traffic 

•  Rack failure à remove a graph node 
–  Similar deterministic algorithm 
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Failure Recovery Results 

•  Structural fault recovery à good robustness 
•  Deterministic algorithms à no extra coordinator 

15 

0.01%

0.1%

1%

10%

100%

 0  20  40  60  80  100

Pe
rc

en
t o

f f
ai

le
d 

pa
th

s

% of racks failed in cluster

Random
Kautz

100% connectivity until 
>50% collocated racks fail 

0.1% paths fail when 
20% of  links fail 

Random link failures Collocated rack failures 



Outline 
•  Motivation 

•  System design 

•  Evaluation 
–  Testbed 

–  Simulation 

•  Conclusion 
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Testbed Validation 

•  Two testbeds 
–  HXI: horn antennas 

–  Wilocity: 2x8 arrays, 
affordable for multi-hop 
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HXI testbed 
Horn antenna 

Wilocity testbed 
2x8 array 

•  Single link performance 
–  Measured per-second TCP throughput over one month 

–  Average 800(HXI)/900Mbps (capped by 1Gbps NIC) 
–  Standard variation <1% average throughput à as stable 

as a wired link 



•  Path self-interference 
–  Kautz à at most 4 hops à at most 2 hop-pairs interfere 

–  Leverage channel allocation (3 channels in 60GHz)  
–  <1% paths have self-interference 

Testbed Validation (Multi-hop) 

•  Without interference 
–  Latency is small 

–  Latency increases with hops 

18 

Multi-hop performance 

Path	
  Length	
   10KB	
  Latency	
  	
  
2	
  hops	
   2.5ms	
  
3	
  hops	
   3.1ms	
  
4	
  hops	
   3.5ms	
  

•  Cross-path interference mitigated by node naming 

Multi-hop paths have low interference à small and 
predictable latency. 



Large-scale Simulation 

•  We implement Angora in NS-3 
–  Antenna: horns and arrays 

–  3D beamforming signal reflection 
–  802.11ad PHY/MAC 

–  Kautz overlay routing 
–  Medium size (320~480 racks) DCN layouts 

•  Micro-benchmarks: path hop count, 
concurrency, fault-tolerance 

•  End-to-end performance: single flow, Poisson 
flows, synchronized flows 
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End-to-end Performance 

•  Worst case: synchronized flows 
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Large messages (1.3MB) 

•  Tail delay satisfies facilities network requirements 
•  Structural (Kautz) >> random at tails 



Conclusion 

•  Motivation: build an orthogonal facilities network 
as a core tool for managing DCN. 

•  We propose Angora, a Kautz overlay built on 
60GHz 3D beamforming links. 

•  Addressed challenges 
–  60GHz link coordination 

o  By Kautz graph w/ arbitrary node size 

–  Wireless interference 
–  Fault tolerance 
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