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Abstract nodes, computing exact values for node separation met-
Through measurements, researchers continue to producees like graph radius, graph diameter, and average path
large social graphs that capture relationships, transadength, requires calculating(n?) node distances. In de-
tions, and social interactions between users. Efficienployed social networks, LinkedIn users can use node dis-
analysis of these graphs requires algorithms that scal@ance to filter out query results in their neighborhood, and
well with graph size. We examine node distance com-social e-commerce sites can use node distance to iden-
putation, a critical primitive in graph problems such astify more trustworthy sellers [27]. Node distance is also
computing node separation, centrality computation, muthe determining factor for other common graph problems
tual friend detection, and community detection. Forlike centrality and mutual friend detection.

large million-node social graphs, computing even a sin- - Current methods for computing node distance do not
gle shortest path using traditional breadth-first-searckcale with graph size. For a graph withnodes and
can take several seconds. m edges, efficient implementations of traditional algo-
In this paper, we propose a novel node distance estirithms including breadth-first-search (BFS), Dijkstra and
mation mechanism that effectively maps nodes in highFloyd-Warshall can produce shortest paths for each node
dimensional graphs to positions in low-dimension Eu-pair in O(nlogn + m) time, and all pairs shortest-paths
clidean coordinate spaces, thus allowing constant timen ©(»?3) [6]. Tolerable for small graphs, the compu-
node distance computation. We describe Orion, a protation required for a single node distance computation
totypegraph coordinate system, and explore critical de-  on a large million-node graph can take up to a minute
cisions in its design. Finally, we evaluate the accuracyon modern computers [23]. Given the prohibitively high
of Orion’s node distance estimates, and show that it cagosts of storing precomputed distances, researchers have

produce accurate results in applications such as node seftle choice but to sample portions of the graph or seek
aration, node centrality, and ranked social search. approximate results.

In this paper, we propose a novel approach to ap-
1 Introduction proximating node distance measurements we@idbh
Coordinate Systems. A graph coordinate system maps
Analysis of graph properties is critical to understandingnodes in high dimensional graphs to positions in a fixed-
the mechanisms underlying the formation and evolutiordimension Euclidean coordinate space. Using the co-
of complex networks, and is of particular importance in ordinates associated with each graph node, we can use
the study of online social networks. In recent years, thea simple Euclidean distance computation to estimate, in
research community has seen a rise in large-scale meaenstant time, its distance to any other node in the graph.
surement studies of deployed social networks [2, 18] andur work is inspired by the prior success of using vir-
interaction networks [15, 32], some producing graphs oftual network coordinate systems [7, 8, 20] to predict la-
up to tens of millions of nodes. The size of these massivéencies between Internet hosts. Studies show that in-
graphs makes their analysis extremely challenging, ategrating network coordinates into applications such as
even efficient algorithms can become time-consuming. web caches and peer-to-peer systems significantly im-
Computing node distance, or the shortest-path disproved their performance. Unlike latencies between In-
tance between two nodes, is a primitive that lies at theernet hosts, however, shortest path values on a graph, by
core of both graph analysis algorithms and social netdefinition, will never violate the triangle inequality [17]
work applications. For example, in a network with  Since triangle inequality violations are often cited as a



key source of error in network coordinate systems, graption. Applications that benefit from these systems in-
coordinates could potentially be even more accurate. clude content distribution networks [24], multicast sys-
We make three key contributions in this paper. First,tems [3], distributed file systems [26] and file-sharing
we propose the use of graph coordinate systems to simetworks [1, 5].
plify node distance computation on large graphs. While The majority of network coordinate systems work by
similar in fundamental methodology to network coordi- mapping an Internet host to a specific position in a Eu-
nates, several critical differences force a ground-up re€lidean space based on round-trip measurements to other
design of graph coordinate systems. For example, whiléosts. Depending on the protocol, a node’s coordinates
network coordinates can be easily tuned using fast lacan be continually refined as additional measurement re-
tency measurementg.§. via Internet ping), measur- sults are added to the system. Once a pair of nodes has
ing actual distances between graph nodes can be vegonverged to their positions in the coordinate space, their
expensive. We describe Orion, a prototype graph coordistance in the Internet (usually a round-trip-time or RTT
dinate system, and explore critical decisions in its de-alue) can be predicted by computing the Euclidean dis-
sign. Second, we perform extensive validation of Orion’stance between their coordinate values.
node distance estimates using several real social graphs.Based on the way coordinates are computed for
Finally, we explore the utility of graph coordinate sys- new nodes, NC systems can be generally categorized
tems in graph analysis and social applications, and shownto “landmark-based” and “decentralized” systems.
that Orion produces effective results on large graphs fot.andmark-based systems such as GNP [20] first compute
applications such as node separation metrics, centralitgoordinates for an initial set of well-known landmark
computation, and ranked social search. nodes using pair-wise measurements, where errors be-
tween virtual and measured distances are minimized us-

Roadmap. We begin in Section 2 by defining our ing a non-linear optimization algorithm such as Simplex

goals and assumptions, and describing key difference : :
from prior work on network coordinate systems. We thenBo.V\mhIII [191' The NC then uses these nodes as fixed
Homts to calibrate coordinate values for the rest of the

descnbe_ the Orlqn gr‘?‘ph coqrdmate system and exIOIaInetwork. Landmark-based systems [17, 20, 21, 22, 29]
key design decisions in Section 3. Next, we present ac; . :

o . have fast convergence properties, since all nodes rely on
curacy measurements of Orion in Section 4, and sho

. o . .~ the same fixed nodes for their coordinate calculations.
the effectiveness of Orion in computing graph metrics .
o . . . . However, the accuracy of these systems can suffer if the
and graph applications in Section 5. Finally, we discuss , . . o
. . . choice of landmark nodes is suboptima, they do not
future directions and conclude in Section 6. e
sufficiently cover the network.
In contrast, decentralized NCs such as PIC [7] and Vi-
2 Virtual Coordinates and Large Graphs valdi [8] allow incoming nodes to orient themselves in
the coordinate space using any nodes already positioned

The goal of our work is to find a compact representa-in the space. While these systems avoid dependence on
tion of distances between nodes in a graph, such that weell-known landmarks, new nodes can force already cal-
can quickly and easily compute estimates of shortest pattprated nodes to adjust their coordinates, potentially in-
distances between any two nodes. We are inspired by thereasing convergence time and propagating errors. For
significant volume of prior work on the topic of network further details on NC systems, we refer the reader to a
coordinate systems, much of which mapped distancegecent survey [9].

between Internet hos_ts to distance; in a_EucIidea_n SPacgceesses and Limitations.  NC systems have been

In this section, we briefly summarize prior work in nét- shown to be highly effective at improving performance
work coordinates, and use it as context to identify keYof |arge distributed systems [12, 1]. However, more re-
differences and challenges in the design of graph coordigent work has questioned the validity of using Euclidean
nate systems. Finally, we briefly discuss related project§paces to approximate Internet latencies, which have
as context for our work. been shown to violate the Triangle Inequality [13, 33].

2.1 Background: Network Coordinates 2.2 Graph Coordinates: Challenges

Network coordinate (NC) systems [7, 8, 17, 20, 21,0ur goal is to investigate the feasibility of using a Eu-
22, 29] were designed as efficient and scalable mechelidean coordinate space to capture node distances on
anisms to estimated distances or latencies between Iarge graphs. Upon consideration, we find that three key
ternet hosts. Such distance estimation mechanisms catifferences separate the problems of estimating shortest
prove critical to large-scale distributed systems that usgaths on graphs and host latencies on the Internet. As a
approximate distance values for performance optimizaresult, we cannot simply apply techniques from NC sys-



tems, but must instead carefully reevaluate them in th@oses to compute nodes position in a graph by exploit-
context of graph distances. ing a coordinate-like approach, called network structure
index (NSI) [25]. Compared to Orion, NSI is more ex-

Triangle Inequality. First, we note that while the pensive in both time and space complexity. The space
presence of triangle inequality violations (TIV) is often complexity of NSI isO(nkD), wherek is the number of

identified as a barrier to accuracy in network coordinate . . ; .

. . zones and) is the number of dimensions, which ate
systems, shortest path computation on graphs is guaraties higher than Orion. On the other hand, NSI's time
teed to be TIV free. This is inherent in the definition ’ '

of the shortest path metric. The proofis straightforwardcomplexny’.O (mka)' Is proportional to _the number of

o : . L=~ “edgesm while Orion takes onlyO(nkD) time, wheren
by contradiction. Assume a triangle inequality violation is the number of nodes. This also represents a sianificant
for three nodes, b, ¢, i.e. d(a,b) + d(a,c) < d(b,c), ' P 9

whered(a, b) represents the shortest path distance begecrease in time complexity, singeis several orders of

. o . magnitude larger than in online social graphs. Further-
tween nodes andb. This scenario is impossible, be- : . .
more, unlike our work, annotation distances computed

cause one can construct a “shorter” shortest path betwe )
: . y NSI are not the number of hops between nodes pairs.
b andc that is the concatenation of the shortest paths be- :
Recent work by Potamias et al. [23] proposes a land-

tween(b, a) and(a, ¢). At minimum, the sum of lengths K sch ; imati hortest path dist
of two shortest paths in the triangle is equal to the lengt ark scheme for approximating shortest pain distances.
The approach is similar in spirit, but stores for each node

of the third. This property means a graph coordinate sys:- . S
property grap y its distance to every landmark. In contrast, Orion is more

tem does not have to support TIVs by resorting to com- ¢ Itst ¢ h nod dinate add f
plex algorithms such as matrix factorization [17]. compact. 1t stores for each node a coordinate address o

e.g. 10 values, independent of the number of landmarks
Cost of Measurements. The second and most crit- used. In addition, our work considers the broader prob-
ical difference between these two problems is the coslem of embedding large graphs into known coordinate
of obtaining ground truth distance values between twospaces, and evaluates our work using a broad array of
nodes. In Internet latency estimation, a running systemapplications.

can perform a latency measurement with minimal cost

via Internet Ping. In contrast, measuring the shortest patﬁoc'aI Networks. A significant amount of research ef-

between graph nodes is expensive, and can take at worg%rt has been invested to understand OSNs such as MyS-

: - - - pace, Orkut [2], Flickr, LiveJournal [18], Facebook [32],
time O(n +m). In addition, computing the distance from and Twitter [10]. Social networks are characterized

a to b using BFS effectively computes the shortest pathb h ies lik law d distributi
betweena to all other nodes in the graph. With these y grap propertle§ K€ power-law degree .|str| ution,
small-world clustering, and scale-free behavior [16]. A

factors in mind, we must carefully consider how graph dition tifvi fth
coordinates obtain real node distances for node calibral€c€SSary precondition for quan ifying some of these

tion. We must minimize the number of overall BFS oper- characteristics is calculating node separation metries (

ations, while reusing the results from each BFS operatioﬁad'us’ d!ameter and average path 'ef‘gth) that are based
as much as possible. on all-pairs shortest paths. Some social applications also

leverage shortest path computations, such as distance-
Error Sensitivity.  Finally, graph coordinate systems based community detection [11]. Unfortunately, com-
face an additional challenge of higher error sensitivity.puting all-pairs shortest paths on today’s social graphs is
While latency between Internet nodes can vary from subinfeasible, since they often have millions of nodes and
milliseconds to hundreds of milliseconds, node distancesiundreds of millions of edges. Existing studies sidestep
on small-world graphs tend to have much smaller vari-this issue by using sampling techniques to estimate the
ance. For example, diameters of recently measured Facgraph’s true values [18, 32]. In contrast, our solution
book graphs are less than 20 [32]. Additionally, all nodecomputes shortest paths between node paisami-
distance values are integers. This means node distanggoseconds, making it a scalable solution for computing
values across different paths in a graph are significantlyll-pairs shortest paths on massive social graphs.
more clustered across a small number of possible values,
and any estimation errors can be rounded up. Thus, a
graph coordinate system must provide reasonably higld Designing Orion
accuracy in order to be useful in graph applications.
In this section, we present the Orion graph coordinate
system and explain our design decisions in detail. Simi-
2.3 Related work lar to network coordinate systems, graph coordinate sys-
tems work in two phases. First, nodes in the graph
Shortest Path Methods.  Shortest path computations are iteratively added to the coordinate space, the po-
are extremely costly on large graphs. Rattigan et al. prosition of each node being calibrated by ground truth



graph, since each computation can, in the worst case,
require a full traversal of the graph. Using a landmark

o 1,0
1{ :: : approach, we limit the total number of Breadth-First-

@@@.
On0.

Search operations tl, the number of landmarks. Each
_ BFS computes the shortest path distance from a land-

X mark to all other nodes. Computing BFS for all land-
marks essentially precomputes all values needed to cal-

1
é @ ibrate all nodes in the graph. In contrast, a decentral-

ized approach such as the physical springs model used by
Vivaldi [8] requires shortest path computations between
Figure 1: Mapping graph nodes into Euclidean coordinate Fandom node pairs, thus drastically increasing the num-
space. For most node pairs, the Euclidean distance exactlper of BFS operations.

matches the hop-count separating them in the original graph ~ The second advantage of a landmark-based scheme is
that the positions of incoming nodes depend only on the

de-di This “calibrati h landmark nodes. This bounds the number of operations
node- Istance measure_ments. IS call ra_itlon P aserequired to compute a node’s position, guaranteeing fast
is where a graph coordinate system incurs its one-tim

%onvergence. In contrast, in decentralized models adding

(r:]ompgtatlongldogeruead. (l)_nce all nodes 'E the grap% ew node will often force its nearby neighbors to make
ave been added, the resulting system can be integrateg justments on their position, a process that can propa-

with graph applications to answer node distance querleaate adjustments iteratively throughout the entire space.

W'tsh. estn;rr]]ates. ati O&1). the f Finally, we note that the challenges that make Land-
ince the per-query computation costgl), the fo- .mark systems undesirable in Internet systems do not ap-

cus of tOltJ.r de”5|gnﬁ.|sl totensgrteh the Callllbranon phase It ly in our context. In network coordinate systems, land-
computationally €fficient, and Ihe resulls are as accuraly,, 1. are physical machines that must remain available

as possible. More specifically, our goals are three-fold: at all times, and processing load from other applications

e Scalability. The computational cost of the calibra- (¢.9. web traffic) can affect the accuracy of latency mea-
tion phase must scale linearly with the number ofsurements to other machines in the network [21]. Com-
nodesj.e. O(n). promised landmarks can also significantly impact the en-

e Accuracy. While individual node distance pre- tiré system [9]. Those issues do not exist for graph coor-
dictions might incur reasonable errors, predictionsdinates, where nodes are just graph vertices and all com-
should approximate ground truth at the large scale Putation can be performed on a centralized server.

e Fast convergence. Impact of individual node cali-
brations should be localizede. should not trigger 3.2 Scalable Landmark Coordinates
significant new adjustments to their neighbors.
) ) Intuitively, the number of landmarks used to calibrate a
~Based on these goals, we now describe the Orion degraph should have a direct impact on the accuracy of the
sign and explain key decisions. Euclidean mapping. Similar correlation between land-
marks and accuracy has been observed in the context of
3.1 A Landmark-based Approach network coordinate systems [20]. The highly connected
) ) ) ) and complex nature of social graphs leads us to believe
Figure 1 illustrates how Orion maps nodes in a graph (Qp 4 an accurate graph coordinate system requires a sig-
positions in aD-dimension Euclidean coordinate space. pjficant number of landmarks. The challenge is to find a

The goal is accurately translate pairwise hop-count dISWay to accurately and quickly compute the coordinates

tances in the graph into Euclidean distances in the COor a large number of landmarks.

ordinate space. To do.t.h|s, Orion uses a Iandmgrk aP- Traditional network coordinates determine a node’s
proach, where the positions of all nodes are Cal'brate‘b-dimension coordinates by minimizing the sum of

with lthecijr relaktivegistancesdto alf(ixeddnumbk). Qf_crl}o— o Sauares of prediction errors using the Simplex Downhill
sen landmark nodes. Landmark nodes are initially chog, o ithm [19], a nonlinear optimization algorithm. The

sen from the entire graph based on their position and deélgorithm runs irO(k2 - D) time to compute coordinates
gree of connectivity. of k landmarks

Why Landmarks? We use a landmark-based scheme Since running Simplex Downhill on our desired num-
in Orion for two main reasons. First and foremost, weber of landmarks (up ta00 in our study) is computa-
wish to minimize the number of shortest path compu-tionally expensive, we propose a new approach, where
tations needed to establish ground truth on the actuale separate our landmarks into two groups, a small ini-



tial group of16 landmarks, and a larger secondary group Network | Nodes Edges Avg. PathLen.
composed of the remaining landmarks. Norway | 293K 5,589K 4.2
We leverage the Simplex Downhill algorithm to com- Egypt 246K 1,618K 5.0
pute the coordinates for the initiat{ = 16) landmarks, Los Angeles| 275K 2,115K 51
thus its asymptotical complexity '@(kﬁ - D). The sec- India 363K 1,556K 6.1

ondary group of landmarks calibrate their positions us-
ing the initial k; landmarks as anchors, contributing to a
computational complexity of onl (k; - D) each. Thus,
the total time required to compute landmark coordinates We consider these strategies as approximations of the
is O(k;* - D) + (k — k;) x O(kr - D), wherek is the  high-centrality strategy, and evaluate their effectisane
total number of landmarks. empirically in Section 4.

Futhermore, we describe wo ways to compute theSummary. Orion works as a landmark-based scheme,
coordinates of the secondary group of landmarks, Wh'l%here an initial core ofi6 landmarks is first fixed in

maintaining the same computational complexity. In thethe space using Simplex Downhill optimization. A sec-

gloéaal_apr;]roach, WZ compute thel goordinlates OL ea_lch ondary group of landmarks position themselves based
hode In the secondary group relying only on the ini-,, y,q original landmarks. Finally, all remaining graph

tial group as aT‘ChorS' In thecremental landmerks ap- nodes calibrate their positions based on node distances
proach, nodes in the secondary group are added one b}Sbtained from computing BFS from all landmarks.

one. Once a node receives its coordinate values, it be-

comes an anchor for all remaining nodes. To compute its

coordinates, any remaining node in the secondary groug Experimental Results

can choose ank; nodes from all embedded nodes to be

its landmarks. In this section we analyze the accuracy of Orion’s node

distance estimates. We study the impact on accuracy by

. key factors: Landmark selection strategy, cardinality of

3.3 Landmark Selection thg Landmark set, and dimensionalityggf node cooyrdi-

Finally, we consider the problem of choosing landmarknates. We preface our core discussion with an overv_iew

nodes to produce the most accurate graph to Euclidea®f the experimental environment and evaluation metrics.

coordinate mapping. Prior work by Potamias et. al con-

sidered the problem of choosing landmarks, and con4.1  Experimental Setup

cluded experimentally that choosing nodes with high

centrality performed significantly better than random\We evaluate Orion accuracy using four anonymized

choice [23]. Given the complexity of computing node datasets (Egypt, India, Los Angeles and Norway) gath-

centrality, we consider two groups of alternative land-ered from Facebook regional networks [32]. These

mark selection strategies as possible approximations d¥raphs were chosen because they are large, but not too

centrality-based selection: Random and High-degree. large to make graph analysis intractable. Their statistica
properties are consistent with other OSN datasets [2, 30].

¢ Random. This is the basic landmark selection strat- Table 1 reports their basic properties.
egy. Landmarks are chosen uniformly at random All experiments were run on 2.4 GHz, dual core Xeon
from all nodes in the graph. servers with 32GB of RAM. All machines ran Fedora
e High-degree. Prior measurements on social net- Core, kernel version 2.6.x.

works [18, 32] show that social graphs exhibit a Eyaluation Metrics.  We use two key metrics to eval-
power-law-like degree distribution. Intuitively, high yate Orion accuracy. The first Relative Error. This
degree nodes reside at the core of social graphs, efnetric is widely used in the study of Network Coordinate
fectively approximating central nodes. This strategy systems, although it must be modified slightly in order
chooses nodes with the highest degree. to evaluate graph coordinate systems. d.andb be two

e Landmark separation. Closely positioned land- nodes in the graph. Let”, be themeasured distance
marks are less effective at “covering” the graph aspetweena andb on the real graph using the BFS algo-
anchors. Therefore, we add variants to the two barithm, and letd”’, be theestimated distance computed

sic strategies, where we select the landmarks on@singa andb's coordinates from Orion. In our context,
by one, ignore any potential landmarks that are tocthe relative error is:

close in the graph to existing landmarks, and con- .
tinue selecting landmarks until the desired number Re — |de17 - da,b|
has been met. N dm,

Table 1:Properties of Social Graphs

1)
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Figure 2:ARE of nodes’ distances with different combination  Figure 3:CDF of relative error on nodes distances on India.
of landmark selection and computation strategies in Inchplg

Cardinality of Landmark Set. In this section we ex-

The second metric igverage Relative Error (ARE) of  plore the variation in accuracy when we initialize Orion
predicted distances. Small ARE values are sufficient taysing different cardinalities of the landmark set. The
prove that the majority of node pairs in Orion have realis-intuition behind this experiment is that by having more
tic predicted distances. Finally, we also @®nputation  Jandmarks spread in the graph there is a better space cov-
time to investigate Orion’s efficiency. erage that should allow higher precision while placing
nodes into this space.

Figure 3 depicts the cumulative distribution function
of the relative error for cardinality0 and100 of the land-
We examine Orion’s estimation accuracy under the influimark set. Figure 3 shows that there is a small increase in
ence of three different factors: landmark selection stratprecision with larger landmark set sizes. In general, al-
egy, cardinality of the landmark set, and dimensionalitymost70% of the computed distances have a relative error
of node coordinates. less ther.2 and more tha®0% are less thaf.4, that

Landmark Selection Strategies. We begin by analyz- gllows us t.o validate a satlsfa(_:tory accuracy in comput-
ing node distances with a relatively small landmarks (i.e.

ing the impact of landmark selection strategies on accu-100| dmark t illesimal of h
racy. In Section 3.3, we describe two selection strategies andmarks represent a millesimal of our graphs).
(random and high-degree) and variants based on landdimensionality of Coordinates.  Nodes are mapped
mark separation. Figure 2 plots AREs for a variety ofinto geometric space based on the coordinates they ac-
landmark selection strategies using the India graph. Wejuire during the initialization phase. Intuitively, cali-
evaluate the accuracy of each different strategy on albrating node positions using a larger coordinate vector
four datasets. These results are similar for all our graphsshould have a direct impact on the precision of the esti-
and we only show India here for brevity. mated distances between nodes.

Each evaluation is performed by selecting)0 ran- We compute coordinates as dimensionality varies be-
dom nodes in the graph and computing pairwise disiween2 and 14. Figure 4 shows that increasing the
tances between them, for a totalsf 500K distances. coordinates dimension also increases the predicted dis-
These results form the control sample when calculatingances between nodes, confirming our intuition. Al-
relative error vs. Orion. Each value reported in Figure 2though higher dimensions produce smaller errors, as the
is the average results ovérsets of randomly selected dimension increases the time for coordinate and distance
1000 node groups. computation increases as well. We explore the trade off

In general, Figure 2 shows that Orion provides low between predicted precision and efficiency and conclude
relative errors compared to actual path lengths for differthat using10-dimensional coordinates is best compro-
ent landmark selection strategies. Among the considereghise. In particular, as shown in Figure 4, the accuracy
strategies, Figure 2 shows that high-degree strategies c@ain forx > 10 slightly decreases.
produce lower errors. Furthermore, the impact of land-
ma_rk se.zpar.atio_n on the accuracy of shortest path I_engtgr_3 Computational Complexity
estimation is fairly small. Taking a close look, the high-
degree incremental landmark selection strategy &ith In this section we investigate Orion efficiency by analyz-
hop separation provides the most accurate result amornigg Orion bootstrap and pair distance computation time
all the considered strategies. As a result, all remaining/ersus BFS.
experiments run with this approach. Orion bootstrap involves two main operationséi)

4.2 Estimation Accuracy
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2 4 6 8 10 12 14 compared to results computed via BFS.
Dimension

Figure 4:ARE of different coordinate dimensions.

5.1 Node Separation Metrics

Time India Egypt L.A. Norway
Orion Bootstrap| 9499s 7852s  8856s 9383g
Orion Responseg 0.2us  0.2us 0.1&s  0.1%us
BFS Response| 1.028s 0.75s 1.027s 1.443

Node separation metrics are commonly used to charac-
terize overall graph structure. The common node sepa-
Table 2:Computation times for Orion and BFS. ration metrics includgraph radius, graph diameter and

averagepath length. Theeccentricity of a node is defined
as the longest hop distance from it to all other nodes in

measure distances from each landmark to all the node® graph. Graph radius is defined as the minimum eccen-
using BFS, andii) compute coordinates using Simplex tricity across all nodes, while graph diameter is defined
Downbhill. We record the time for bootstrapping Orion as the maximum eccentricity across all nodes. Average
on our four social graphs and show that Orion bootstragath length is the mean of all shortest path lengths.
time is abou® hours (as shown in Table 2). These times
are acceptable since bootstrapping is a one-time cost. Computation Time. Given their intensive use of

Response time is the average time to compute pairwisehortest path computations, node separation metrics are
node distances using Orion. As shown in Table 2, Orioran ideal application for Orion. We would like to quan-
is 7 orders of magnitude faster than BFS. This result con+ify Orion’s accuracy in this context by computing these
firms the huge gain a coordinate graph system like Oriormetrics using Orion and compare them directly to those
is able to achieve compared to traditional methods. from BFS. Given the large sizes of our graphs, however,

Note that Orion bootstrap and response times are fundt was not possible for us to compute eccentricity for all
tions of the number of nodes in the graph. Converselythe nodes by BFS for direct comparison. From our time
BFS computation time is a function of the number of measurements of single node full BFS we estimate a full
edges. Thus Orion is likely to provide better scalability computation of the Los Angeles network (275K nodes)
than BFS because, as social networks expand, the growwould take roughly 152 hours or more than 6 days of
in edges far surpasses the growth in nodes. computation. In contrast, embedding the LA network
into Orion takes less than 2 hours, and querying for all

. L .. pairwise paths takes roughly 7000 seconds, for a total
5 Using Orion in Graph Applications process time of less than 4 hours.

To demonstrate Orion’s utility and accuracy in an opera-,
tional setting, we integrate Orion into several graph anal-
ysis and social applications that make extensive use

shortest path computations. Under normal conditions

ccuracy Results.  For a scalable side-by-side com-

arison, we randomly sample 1000 nodes from each of
e graphs, and compute graph radius, diameter and av-
erage path length based on BFS from those nodes to
3l other nodes in the graph. We compare those results

tionally motr_act?ble f(?r tljlrg%?r_aphs. We fhh(iw that WE o those generated using node distance estimations from
can use Lrion to scalably obtain answers that reasonabiy ;,, 44 show the results in Table 3. We find that Orion

agpro;lma_t? arl}swerslob;[(alneg from deterministic methberforms very well in predicting these metrics. For graph
ods. Specifically, we look at three common Operations, o ;¢ ang diameter, it always provides a result thatis less

computing node separation metrics such as graph radiuaﬂan 1 hop from the BFS answer. In the case of average

diameter and average path length, locating central nOdeﬁath length, Orion is even more accurate, and provides
in a graph, and ranked social search. ' '

results that never deviate more than 0.3 from BFS.
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5.2 Computing Node Centrality rate because it has the longest average path lengths of
. . o _ our sample graphs. The results are generally good across
Information dissemination is an active research areahe board, with Orion giving correct estimates more than

of social networks. Viral spread [31], influence cam- 509 of the time, when selecting top 50 highest centrality
paigns [4, 14], and breaking-news coverage [10] are alhodes out of 1000.

examples of information dissemination problems on so-

cial graphs. A critical, but computa_ltiona_llly expensive, 53 Ranked Social Search

metric necessary for these applicationsasle central-

ity. We leverage Orion coordinates to compute node’'sOnline social networks often need to rank their query re-

centrality in order to compare its speed and accuracyults by proximity in the social graph to the query owner.

with centrality calculations performed using traditional For example, searches for specific names on Facebook

shortest-path algorithms. and LinkedIn will only return the top results that are clos-
Centrality is defined as the average shortest patlest in social distance to the user. Social distance is used

length from a node to every other nodes in the graph. to rank query results because users generally care about

The smaller the average path length for a node is, th@eople close to their social circles.

higher its centrality is. Using Orion, a node can quickly We implement a ranked social search application. In

estimate its centrality by computing its average Eu-each graph, we randomly select 100 nodes to represent

clidean distance to all other nodes in the graph. the total set of results for each query. We run the simula-
We estimate the precision of computing node centraldion 5000 times, each time with a randomly chosen node

ity via Orion by comparing its results to actual results as the point of origin for the query.

computed using BFS. Computationally, node centralityACCuraCy Results. We sort the randomly selected0
also requires all pairs of shortest paths computation, anﬂodes in increasing order and choose the ftopodes.
our time estimates from node separation metrics also aprpen we count the amount of overlap in the two sets
ply here (152 hours for our LA graph). of top k£ nodes computed by Orion and the BFS-based

Accuracy Results.  To keep computation time man- approach. We define the accuracy of the ranked social
ageable, we again sample00 random nodes from each search in Orion as the ratio of the number of overlapping
graph’ and compute node Centra"ty values for each nod@OdeS to the total number of all considered nodes. Flg-
using both Orion and BFS. We sort nodes based on theire 6 plots the accuracy values over different values of
average shortest path length to every other node in th&, averaged across the 5000 runs. Again, Orion’s social
network, in increasing order. Then we select the top search produces fairly good results, with more than 60%
nodes from each resulting group, and count the numbe®verlap when choosing the top 20 responses.

of top k£ central nodes (according to BFS) that also ap-

peared in Orion’s results. We repeat this for 5 sets ol Conclusions and Future Directions

1000 random nodes and average the result.

Figure 5 shows the percentage of tbpodes that are  Shortest path computation is one of the most critical
correctly considered found by Orion, for different val- and computationally intensive primitives for both graph
ues ofk: 50, 100, and 200. The overlap between Orionanalysis and social networking applications. We pro-
and BFS’ results increases with As with results in  posegraph coordinate systems, a new approach to dra-
Section 4.3, centrality results for India are more accu-matically reduce the complexity of shortest paths com-



putation by mapping the entire graph into a multi- [10]
dimensional Euclidean coordinate space. We describe
the design of Orion, an efficient graph coordinate proto{11]
type. Mapping a graph of nodes takes tim@(k;- D -n)
(roughly 2-3 hours for a 275K node graph), after which
each node distance estimation takes less than 0.2 mit?
croseconds. Our experiments show Orion can provide
accurate results both for graph metrics such as graph r t
dius and node centrality, as well as graph-based applica-
tions such as ranked social search. [14]

FutureDirections.  We believe graph coordinate sys-
tems are a promising new research direction for scalabl&4]
graph analysis. While our work here is preliminary, we
see three immediate areas for future work. First, wel®l
would like to explore the efficacy of mapping graphs

to non-Euclidean coordinate systems such as sphericglln
and hypercube. Second, we will examine the impact
of graph coordinates on weighted graplesy. geo- 18]
graphical graphs or temporal distance metrics for socia‘
graphs [28]. Finally, Orion is designed for static graphs.|;g;
Adding new nodes to the graph after the initial mapping
can change shortest path values for portions of the grapfagj
and force a re-mapping of the graph. We will investigate
mechanisms and heuristics to allow run-time modifica-
tions to graphs already mapped to the coordinate spacel21l]
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